Existence and asymptotic behaviour of nonoscillatory solutions of second-order neutral differential equations with “maxima”
نویسندگان
چکیده
منابع مشابه
Oscillatory and Asymptotic Behavior of Solutions of Second Order Neutral Delay Differential Equations with “maxima”
The authors establish some new criteria for the oscillation and asymptotic behavior of all solutions of the equation. (a(t)(x(t) + p(t)x(τ(t)))) + q(t) max [σ(t),t] x(s) = 0, t ≥ t0 ≥ 0, where a(t) > 0, q(t) ≥ 0, τ(t) ≤ t, σ(t) ≤ t, α is the ratio of odd positive integers, and ∫∞ 0 dt a(t) < ∞. Examples are included to illustrate the results. AMS Subject Classification: 34K11, 34K99
متن کاملExistence of Nonoscillatory Bounded Solutions for a System of Second-order Nonlinear Neutral Delay Differential Equations
A system of second-order nonlinear neutral delay differential equations ( r1(t) ( x1(t) + P1(t)x1(t− τ1) )′)′ = F1 ( t, x2(t− σ1), x2(t− σ2) ) , ( r2(t) ( x2(t) + P2(t)x2(t− τ2) )′)′ = F2 ( t, x1(t− σ1), x1(t− σ2) ) , where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)× R2,R), i = 1, 2 is studied in this paper, and some sufficient conditions for existence of nonosc...
متن کاملExistence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients
Throughout this paper, the following conditions are assumed to hold. () n≥ is a positive integer, r ∈ C([t,∞),R+), < a < b, τ > , σ > ; () p ∈ C([t,∞)× [a,b],R), q ∈ C([t,∞),R+), q ∈ C([t,∞),R+), h ∈ C([t,∞),R); () (u) is a continuously increasing real function with respect to u defined on R, and –(u) satisfies the local Lipschitz condition; () gi ∈ C(R,R), gi(u) satisfy the l...
متن کاملNonoscillatory Solutions of Second Order Differential Equations with Integrable Coefficients
The asymptotic behavior of nonoscillatory solutions of the equation x" + a{t)\x\' sgnx = 0, y > 0 , is discussed under the condition that A(t) = limr_00/, a(s)ds exists and A(t) > 0 for all t. For the sublinear case of 0 < y < 1 , the existence of at least one nonoscillatory solution is completely characterized.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1997
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(97)00105-2